Simulating a concrete Postmachine using Markov Algorithms

Definition of a postmachine:

A Postmachine consists of a programm and an infinite FIFO Queue
The program can perform the following operations:
An operation is always of the form: line number followed by the instruction.
There are two types of instructions:
a) Append an alphabet symbol at the end of the queue and jump to a certain
line number
e.g.
001 queue := queue || x; goto 010;
b) Remove the symbol at the beginning of the queue. Depending on this
symbol jump to a certain line number
e.g.

010 case x: goto @11; case y: goto 100; case empty string: goto 101;

Simulation using a Markov algorithm

The alphabet of the markov algorithm consists of the symbols @ and 1 to encode
the line numbers ind binary representation and the alphabet symbols from the tag
machine.

e.g.
A_Postmachine = {x,z}
A_Markov = {0,1,x,y}

The Markov algorithm needs a marker to move the appended symbol to the end of
the queue.

M_Markov = {alpha}
Each instruction from the program of the postmachine is translated as follows:
Instruction of type a)
001 queue := queue || x; goto 010;
is translated into
201->010 alpha x
We need additional rules at the beginning of the markov algorithm,
which move the alpha together with the appended alphabet symbol towards
the end of the queue:

alpha x x -> x alpha x
alpha y x -> y alpha x

and so on
The marker has to be removed once it has reached the end:
alpha -> epsilon
Instruction of type b)
010 case x: goto 011; case y: goto 100; case empty string: goto 101;
is translated into

> 0
1

SRR

10x - 1

10y ->100

10->101

The order of these rules is important, as the match for the empty string
would always be true and therefore has to be at the end of this set of
rules

To avoid problems, the line numbering should be chosen in a way that no line
number is a prefix of another one. This could be achieved for example by using
line numbers of a fixed length.

Given a postmachine with an alphabet of size m and a program of length n.

That gives us a set of rules for the Markov algorithm simulating this
postmachine of size O(mA3 + n).

View at the postmachine as an automaton

A postmachine can be considered as an automaton. The line numbers indicate the
different states. A state transition is given by:

(gi,a) -> (aj,bd

where a is the symbol that is removed at the beginning and b is the symbol that
is appended at the end of the queue.

An instruction of type a) would therefore be of the kind:
(ai,-) -> (aj,b)

An instruction of type b) would be:
(ai,x) -> (a3,-)

(qi,y) -> (gk,-)
(qgi,epsiolon) -> (ql,-)

This version of the postmachine is able only either to remove a symbol or to
append a symbol in a single step.

If we want a model where in a single step a symbol can be removed and a symbol
appended, we have to use several commands from our postmachine together:

(qi,a) -> (a3,b)
is programmed as

qi case a: goto gk;
gk queue := queue || b; goto qj

Example of a simulation of a postmachine in the automat view using a markov
algorithm:

Postmachine that decides the language L = {w | w = xAn yAn}
A_Postmachine = {x,y,#}

(000,-) -> (@01,#)

(001,x) -> (010,-) // remove one X

(001,#) -> (111,-) // algorithm terminated, w accepted
(010,x) -> (010,x) // move x to the end of the queue
(010,y) -> (011,-) // remove one y

(011,y) -> (011,y) // move y to the end of the queue
(011,#) -> (000,-) // start a new iteration

Idea: The postmachines performs several iterations. In each iteration the
number of x's and y's is reduced by one. If at the end, the # remains,
the machine accepts and terminates in state 111, otherwise it rejects.

This algorithm can now be translated directly into the corresponding markov
algorithm:

A_Markov = {0,1,x,y,#}
M_Markov = {alpha}

alpha # x -> x alpha #
alpha # y -> y alpha #
alpha x x -> x alpha x
alpha x y -> y alpha x
alpha x # -> # alpha x
alpha y x -> x alpha y
alpha y y -> y alpha y
alpha y # -> # alpha y

alpha -> epsilon

000 ->00 1 alpha #
2001x->010
001#->111
010 x ->010 alpha x
010y >011
011y ->011alphay
011#->000

Conclusion:

This prooves that every algorithm that can be processed by a postmachine can equally
be executed using a markov algorithm. Therefore the markov algorithm has the same
computational power as a post machine.

A postmachine is equivalent to a turing machine. That gives the conclusion that
the markov algorithm is as strong as a turing machine concerning its computational
power.

